
www.nyphp.com / www.nyphp.org

11/4/2009 © 2008 New York PHP, LLC 1

PHundamental Security
Ecosystem Review, Coding Secure with PHP, and Best Practices

Hans Zaunere, Managing Member

OWASP NYC AppSec 2008

September 24th, 2008

New York PHP Community

November 25th, 2008

PHP Barcelona

October 31th, 2009

www.nyphp.com / www.nyphp.org

11/4/2009 © 2008 New York PHP, LLC 2

Overview

• Introduction

• The Security Ecosystem

• Security Pressure Points in PHP

• Best Practices

• “It‟s the System, Stupid!”

• Top 5 Best Practices

• Conclusions

www.nyphp.com / www.nyphp.org

11/4/2009 © 2008 New York PHP, LLC 3

Introduction

• www.nyphp.org
– www.nyphp.org/phundamentals/

• This is not YASIXSKOTDT
– Yet-Another-SQL-Injection-XSS-Script-Kid-Of-The-Day-Talk

• There are other resources for that:
– http://www.suspekt.org/2008/09/18/slides-from-my-lesser-

known-security-problems-in-php-applications-talk-at-zendcon/

– Numerous other excellent cut-paste resources for these
ubiquitous attacks

– Ubiquitous means they can happen in any language

PHP is the PHP: Hypertext Preprocessor

http://www.nyphp.org/
http://www.nyphp.org/phundamentals/
http://www.suspekt.org/2008/09/18/slides-from-my-lesser-known-security-problems-in-php-applications-talk-at-zendcon/
http://www.suspekt.org/2008/09/18/slides-from-my-lesser-known-security-problems-in-php-applications-talk-at-zendcon/
http://www.suspekt.org/2008/09/18/slides-from-my-lesser-known-security-problems-in-php-applications-talk-at-zendcon/
http://www.suspekt.org/2008/09/18/slides-from-my-lesser-known-security-problems-in-php-applications-talk-at-zendcon/
http://www.suspekt.org/2008/09/18/slides-from-my-lesser-known-security-problems-in-php-applications-talk-at-zendcon/
http://www.suspekt.org/2008/09/18/slides-from-my-lesser-known-security-problems-in-php-applications-talk-at-zendcon/
http://www.suspekt.org/2008/09/18/slides-from-my-lesser-known-security-problems-in-php-applications-talk-at-zendcon/
http://www.suspekt.org/2008/09/18/slides-from-my-lesser-known-security-problems-in-php-applications-talk-at-zendcon/
http://www.suspekt.org/2008/09/18/slides-from-my-lesser-known-security-problems-in-php-applications-talk-at-zendcon/
http://www.suspekt.org/2008/09/18/slides-from-my-lesser-known-security-problems-in-php-applications-talk-at-zendcon/
http://www.suspekt.org/2008/09/18/slides-from-my-lesser-known-security-problems-in-php-applications-talk-at-zendcon/
http://www.suspekt.org/2008/09/18/slides-from-my-lesser-known-security-problems-in-php-applications-talk-at-zendcon/
http://www.suspekt.org/2008/09/18/slides-from-my-lesser-known-security-problems-in-php-applications-talk-at-zendcon/
http://www.suspekt.org/2008/09/18/slides-from-my-lesser-known-security-problems-in-php-applications-talk-at-zendcon/
http://www.suspekt.org/2008/09/18/slides-from-my-lesser-known-security-problems-in-php-applications-talk-at-zendcon/
http://www.suspekt.org/2008/09/18/slides-from-my-lesser-known-security-problems-in-php-applications-talk-at-zendcon/
http://www.suspekt.org/2008/09/18/slides-from-my-lesser-known-security-problems-in-php-applications-talk-at-zendcon/
http://www.suspekt.org/2008/09/18/slides-from-my-lesser-known-security-problems-in-php-applications-talk-at-zendcon/
http://www.suspekt.org/2008/09/18/slides-from-my-lesser-known-security-problems-in-php-applications-talk-at-zendcon/
http://www.suspekt.org/2008/09/18/slides-from-my-lesser-known-security-problems-in-php-applications-talk-at-zendcon/
http://www.suspekt.org/2008/09/18/slides-from-my-lesser-known-security-problems-in-php-applications-talk-at-zendcon/
http://www.suspekt.org/2008/09/18/slides-from-my-lesser-known-security-problems-in-php-applications-talk-at-zendcon/
http://www.suspekt.org/2008/09/18/slides-from-my-lesser-known-security-problems-in-php-applications-talk-at-zendcon/
http://www.suspekt.org/2008/09/18/slides-from-my-lesser-known-security-problems-in-php-applications-talk-at-zendcon/
http://www.suspekt.org/2008/09/18/slides-from-my-lesser-known-security-problems-in-php-applications-talk-at-zendcon/

www.nyphp.com / www.nyphp.org

11/4/2009 © 2008 New York PHP, LLC 4

Look Familiar?

HTTP – The Great Equalizer

www.nyphp.com / www.nyphp.org

11/4/2009 © 2008 New York PHP, LLC 5

The Security Ecosystem

• Security fundamentals are common across the board

• Different environments have different requirements

– Desktop applications are different from web/internet applications

• Web/Internet apps have a huge number of touch points

– PHP isn‟t responsible for all of them – in fact, not most

– The Developer/Enterprise is - in ALL cases

• Different languages handle in different ways

– .NET, Java, Python, PHP all have their idiosyncrasies

• PHP is no different... except...

“More internet applications speak PHP than any other”

www.nyphp.com / www.nyphp.org

11/4/2009 © 2008 New York PHP, LLC 6

The PHP Ecosystem

• PHP gets a bad rap

– Low point of entry and great flexibility

• And there‟ve been some mistakes

– Weak default configuration

– Variable ease of use and scope

– The infamous magic_* of PHP

– PHP Group [rightfully] argues: “What‟s a security flaw?”

“Greatest strength and biggest weakness”

“It's easy to shoot yourself in the foot with C. In C++ it's harder to shoot

yourself in the foot, but when you do, you blow off your whole leg.”

Bjarne Stroustrup, Inventor of C++

www.nyphp.com / www.nyphp.org

11/4/2009 © 2008 New York PHP, LLC 7

Security Points-of-Entry

• PHP is effectively a wrapper around libraries and data

sources

– Many external dependencies and touch points

• There are many zones of responsibility

– A language is not responsible for them – a developer/enterprise

is

– A language should not go out of its way to save the developer

• Frameworks/foundations can be used for this

Three Zones of Responsibility

www.nyphp.com / www.nyphp.org

11/4/2009 © 2008 New York PHP, LLC 8

Security Points-of-Entry

1. Developer

– Poorly written code by amateurs

– Primary cause for the security ecosystem around PHP

– Easy to pick up for those with no programming background

– Laziness - letting PHP do its magic_*

– Doing things quick-n-dirty

– Too forgiving

Three Zones of Responsibility

“Program Smart”

www.nyphp.com / www.nyphp.org

11/4/2009 © 2008 New York PHP, LLC 9

Security Points-of-Entry

2. Extensions and external libraries

• PHP‟s greatest asset

• Sometimes library binding is faulty

– There could be better extension certification, and it‟s getting better

• Sometimes the external library has faults, or behaves in an

unforeseen way when in a web environment – possible in

any environment

• Know what extensions you‟re using, use the minimal

number of extensions, and be aware of the environment

they were originally designed for.

Three Zones of Responsibility

“Know Thy Extensions”

www.nyphp.com / www.nyphp.org

11/4/2009 © 2008 New York PHP, LLC 10

Security Points-of-Entry

3. PHP Core – “PHP”

• This is PHP

• Secunia: PHP: ~20 advisories between „03-‟09

Java: 48+ between „03-‟9

Ruby: 12+ between „03-‟09

• Often safe_* and magic_* related

– Functions designed to protect developers from ignoring best practices.

– Or deal with shared environment where incorrect security

expectations are prevalent.

Three Zones of Responsibility

“The List Goes On – PHP is Not Alone”

“More internet applications speak PHP than any other”

www.nyphp.com / www.nyphp.org

11/4/2009 © 2008 New York PHP, LLC 11

Best Practices

• Best practices are common to any well run enterprise

environment

– Yes, PHP has grown/is growing into this environment very

quickly

• Web security is largely about your data and less about

exploits in the underlying platform

– Buffer overflows aren‟t so much the hot topic

– ... and those who know, don‟t talk

or, How not to blow off your whole leg

www.nyphp.com / www.nyphp.org

11/4/2009 © 2008 New York PHP, LLC 12

PHP Best Practices

• Installation

– Avoid prepackaged installs, including RPMs, .deb, etc.

– If you use them, review their default deployment

– Installation touch points also typically include Apache/MySQL

• Configuration

– Use php.ini-recommended or php.ini-production

– Better yet, take the time to know what you‟re doing and tune

configuration files yourself, for your specific needs and

remembering how your system is most vulnerable

Or, How not to blow off your whole leg with PHP

www.nyphp.com / www.nyphp.org

11/4/2009 © 2008 New York PHP, LLC 13

PHP Best Practices

• Don‟t make PHP guess what you mean

– Be explicit with variables and types

– Don‟t abuse scope – know where your variables come from

– Avoid magic_* and implicitness – BE EXPLICIT

• Keep code small, organized and maintainable

– Keep code/logic chunks small

– Use OOP techniques to enforce code execution paths

– Use includes to keep things organized

• Don‟t use super-globals directly – wrap for protection

Be Fashionable – Style and Design

“Be aggressive – B.E. aggressive”

www.nyphp.com / www.nyphp.org

11/4/2009 © 2008 New York PHP, LLC 14

PHP Best Practices

• It‟s always about data

• One of PHP‟s greatest strengths – loosely typed

– ... and you guessed it – biggest weaknesses

– Don‟t make PHP guess what you mean

• Cast variables, know their types and the data you expect

– Let PHP do its magic only when you want it to – not by chance

– Majority “PHP security flaws” could be avoided by casting to int

Know Your Data – Love Your Data

www.nyphp.com / www.nyphp.org

11/4/2009 © 2008 New York PHP, LLC 15

PHP Best Practices

• Keep tabs on your data‟s path, lifecycle and type

– Know where it‟s come from, what it‟s doing, and where it‟s going

– Filter/escape/cast and throw exceptions every step of the way

• Input validation, output validation, CASTING

• Don‟t be lazy – be explicit – use OOP

It‟s 10pm – Do You Know Where Your Data Is?

“Casting isn’t just for movie producers”

www.nyphp.com / www.nyphp.org

11/4/2009 © 2008 New York PHP, LLC 16

“It‟s the System, Stupid”

• No system has a single security weakness

• Put PHP in the same well managed enterprise

environment as other technologies

• Don‟t take the easy way out just because you can

• PHP/AMP respond very well to TLC

Networks, Systems, and Databases, Oh My

www.nyphp.com / www.nyphp.org

11/4/2009 © 2008 New York PHP, LLC 17

The Top 5 Best Practices

1. PHP is loosely typed and automatically converts between types (known as

type casting). However, always consider variables typed, and allow type

casting to happen only explicitly. In fact, explicitly type casting variables

can add a significant level of data validation and security.

http://www.php.net/manual/en/language.types.type-juggling.php

2. Remember that PHP is a dynamic scripting language, allowing execution

to jump between files during runtime. However, don‟t lazily abuse

including other files – keep all include/require statements in a centralized

place and always know what files you‟re including.

http://www.php.net/manual/en/function.require.php

http://www.php.net/manual/en/function.include.php

In No Particular Order

www.nyphp.com / www.nyphp.org

11/4/2009 © 2008 New York PHP, LLC 18

Top 5 Best Practices

3. A typical PHP application will deal with a lot of external data, usually from

unknown sources – especially someone‟s web browser, or worse,

someone hand-crafting HTTP requests. PHP is on the front line of

security. Always be aware of where your data is coming from, what you‟ll

be doing with it, and where it‟s going.

http://www.php.net/manual/en/security.php

4. PHP is very forgiving with its syntax, style and application structure.

People on the web are not forgiving. Write clean, organized, and

structured code, using the right tools for the job. Do not take shortcuts,

depend on PHP‟s “magic” or convenience functionality, or force PHP into

guessing what you want to do. You‟re the programmer – be specific.

http://www.php.net/manual/en/tutorial.php

In No Particular Order

www.nyphp.com / www.nyphp.org

11/4/2009 © 2008 New York PHP, LLC 19

The Top 5 Best Practices

5. PHP‟s greatest strength and weakness is its ease, power and flexibility.

As a result, there is a lot of bad PHP code on the Internet, which is the

source of PHP‟s bad reputation. A programming language is only as good

as the programmer.

Look at most other publicly available PHP code and if it appears sloppy, do

what you know is right. If you have experience in another programming

language, use it. If not, take the time to properly learn some programming

theory, involve yourself with experienced programmers in the community,

learn about the other components of web development, and then apply it

all to the PHP syntax.

Your applications will be more secure, more maintainable, and PHP

literally becomes a joy to code in.

Everyone is encouraged - worldwide - to join the New York PHP mailing

lists at http://www.nyphp.org/Mailing-Lists to ask questions and seek

advice.

And the #1 Fifth Best Practice!

http://www.nyphp.org/Mailing-Lists
http://www.nyphp.org/Mailing-Lists
http://www.nyphp.org/Mailing-Lists

www.nyphp.com / www.nyphp.org

11/4/2009 © 2008 New York PHP, LLC 20

Conclusions

• PHP is just part of the ecosystem

• ... and there is awareness and experience on the PHP side

• The yin/yang of PHP‟s history overshadows reality

• Stand by PHP and it‟ll stand by you

• Program it - don‟t hack it

• Web/Internet applications are deep and complex

– Users, interoperability, data, architecture, support, compliance

– PHising, hijacking, spam, social engineering – BROWSERS!

Goal: PHP is Just One of the Boys

“PHP is the least of your worries”

“With great power comes great responsibility.”

Spiderman’s Uncle

www.nyphp.com / www.nyphp.org

11/4/2009 © 2008 New York PHP, LLC 21

Thank You

hans.zaunere@nyphp.com

For renowned worldwide online support, New York PHP Mailing Lists

are free and available to anyone:

http://www.nyphp.org/Mailing-Lists

